PRODUCT DETAILS

- Available in three different face lengths for a random look
- Can be used for straight or curved walls
- Use as seating areas, borders and courtyards
- Can be used for walls up to 3 feet high, including buried course
- Columns or pilasters constructed with the pillar units can be built up to 6 feet high, including buried course
- M inimum radius using all three units: 3.75 feet
- Maximum straight wall length between design elements: 10 feet
- Structural design elements include jog, 90° corner, column, pilaster or 7 -foot radius at least 11 feet long

Provide more seating in a small patio with a Highland Stone®Free Standing Wall. See page 13 for more information about capping a column.

LARGE
Front, 6" x 18" x 9"
Back, 6 " $\times 16^{\prime \prime} \times 9^{\prime \prime}$

MEDIUM
Front, 6" x 12" x 9"
Back, 6" x 10" x 9"

SMALL
Front, 6" x 6" x 9" Back, 6" x 4" $\times 9^{\prime \prime}$
$.21 \mathrm{sq} . \mathrm{ft}$.

COLUM N

6" x 18" x 9"

EXTRA LARGE CAP
Front, $3^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime}$
Back, $3^{\prime \prime} \times 12^{\prime \prime} \times 13^{\prime \prime}$

Approximate Weight*	75 lbs.	44 lbs.
Coverage	$.75 \mathrm{sq} . \mathrm{ft}$.	$.31 \mathrm{sq} . \mathrm{ft}$.

*Actual dimensions and weights may vary from these approximate dimensions and weights due to variations in manufacturing processes. Specifications may change without notice. See your Anchor representative for details, color options, block dimensions and additional information.

ESTIM ATING FORM ULAS

For project material estimating, use the formulas listed in each step.

1

WALL ESTIMATING

Straight Walls

Determine the square footage of the exposed wall.
Exposed wall is length $(\mathrm{L}) \times$ height $(\mathrm{H})=$ square
feet (SF). SF $\div 1.4=$ \# units of each size for exposed wall.
SF $\div 1.4=$ \# units of each size for exposed wall

Curved Walls

The buried course of a curve requires the same kind of blocks as used in the pattern above ground. The square footage of the inside radius is slightly less than the square footage of the outside radius. When estimating, measure the outside wall face. Square footage (SF), including base course, \div by 1.5 .

$$
S F \div 1.5=\# \text { units of each size }
$$

2

BURIED BASE UNIT ESTIMATING

Use the large units for the buried base when building straight walls. Divide the wall length (L) by 1.4 to determine the number of large units needed for the base of a straight wall.
$\mathrm{L} \div 1.4=$ \# large units for buried base

3 COLUMN QUANTITY ESTIMATING

Estimate the quantity needed for a column by multiplying the height (H) in feet, including the buried course, $x 8$.
H x 8 = \# units per column

CAP ESTIM ATING

Convert wall length to inches. Wall length (L) x 12 $=\mathrm{L}$ in inches (LI). The cap factor (CF) = cap front inches + cap back inches $\div 2$.
LI x CF = \# caps for wall
For curved walls, add 10 percent. If you are using wall caps for the column, multiply the number of caps needed per column by the number of columns you are building.

WALL LEVELING PAD

AGGREGATE ESTIMATING
Leveling pad material is a compactible base material of $3 / 4$-inch minus (with fines). The leveling pad extends at least 6 inches in front of and behind the wall units and is at least 6 inches deep after compaction. [Wall length in feet (L) x leveling pad width in feet (W) x leveling pad depth in feet (D)] $\div 27 \times 1.1=$ cubic yards (CY). $\mathrm{CY} \times 1.6=$ tons.
(L x W x D) $\div 27 \times 1.1=\mathrm{CY}$
CY x $1.6=$ tons

COLUMN OR PILASTER LEVELING PAD AGGREGATE ESTIMATING

Leveling pad material is a compactible base material of $3 / 4$-inch minus (with fines). The leveling pad for a $27-\times 27$-inch column or pilaster is 39 inches square and at least 6 inches deep after compaction.
(L x W x D) $\div 27 \times 1.1=\mathrm{CY}$
CY x $1.6=$ tons

PROJECT ESTIMATING EXAMPLE

The project is a 25 -foot-long straight wall that is 2.5 feet high. There are three columns that are 3 feet high.

1 STRAIGHT EXPOSED WALL UNITS

$25^{\prime} \mathrm{Lx} 2^{\prime} \mathrm{H}=50 \mathrm{SF} \div 1.4=\underline{36}$ large,
medium and small units for exposed wall

2 BURIED BASE UNITS

$25^{\prime} \mathrm{L} \div 1.4=18$ large units for buried base
TOTAL WALL UNITS NEEDED Large:
Buried base units 18

+ Exposed wall units 36
Total units 54

Medium 36

Small 36

3

COLUMN UNITS

$3^{\prime} \times 8=24$ column units per column
Total column units needed per column 24
x Number of columns 3
Total column units $\quad 72$

4
 CAP UNITS

LI example: $25^{\prime} \times 12=300$
CF example: $18^{\prime \prime}+12^{\prime \prime}=30 " \div 2=15$
Project example: $300 \div 15=\underline{20}$ caps for wall

COLUMN/PILASTER LEVELING PAD AGGREGATE

\[

\] Installation instructions

PREPARE LEVELING PAD

Excavate for the leveling pad. The trench should be a minimum of 21 inches wide and should be 6 inches deeper than the block. See Diagram 1.

Create a leveling pad of compacted base material that extends a minimum of 6 inches in front of and 6 inches behind the wall units. This pad should also be at least 6 inches deep after compaction.

BASE COURSE

Once the pad is compact and level, begin placing the units. Center the units on the pad. The ends of the units should be in contact. The base course must be buried below grade and should be included when calculating total wall height. See Diagram 2.

Base Course

It's easiest to build the base course for a straight wall out of large Free Standing Wall units.

BUILDING THE WALL

Units can be placed in any order to form an aesthetically pleasing layout. The simplest is one that incorporates large, medium and small units. The units should be installed so the ends are in complete contact with each other. Remember to keep the wall on bond by placing units in a staggered relationship to the course beneath. Repeat this process to complete the wall. Remember to glue the top two courses and caps in place with a concrete adhesive.

ENDING A WALL

Split a large unit into pieces sized as needed. Do not use pieces smaller than 6 inches wide. If needed, cut the second-to-last piece and make the last piece the appropriate size. Smaller pieces should be glued into place with a concrete adhesive. After splitting the end piece, use a hammer and chisel to create a rounded appearance to match the manufactured split blocks.

CAPPING A WALL

See page 24 for details about capping a wall.

STRUCTURAL DESIGN ELEMENTS

Structural design elements must be used if a free standing wall is more than 10 feet long. Structural design elements include:

- 7-foot radius for 11 feet
- Jog
- 90° corner
- Column
- Pilaster

Construction details for columns and pilasters are on pages 10 through 13.

CURVED WALLS

Add stability and a natural flow to walls with curves. While units can be turned somewhat, it may be necessary to make cuts with a concrete saw or splitter. As a rule, the smaller the units, the tighter the radius. Conversely, the larger the units, the larger the radius. Use approximately the same number of units for each course. The approximate minimum radius the system can turn, using all three pieces without cutting, is 3.75 feet measured to the outside face of the wall.

FREE STANDING WALL JOG

Jogs are used to break up straight lines and add stability to walls. Split units as needed. Use hammer and chisel to round split faces. Glue all courses of jog with a concrete adhesive.

A radius of 7 feet or less is considered a design element if it is one quarter of the circumference of the circle which would be made by that radius (11 feet of a circle with a 7 -foot radius).

90° CORNER

To create a 90° corner in a straight wall, make a third side to a large unit by splitting it to the appropriate dimension. Use only large units to assure connecting units are on bond. Alternate the direction the units face with each course. Round the split ends with a hammer and chisel. Glue all corner courses with a concrete adhesive.

COLUMNS

When used with a free standing wall, a column increases wall stability. Placing fixtures on columns is also a great way to incorporate lighting. Columns can be located in the middle or at the end of a wall. The open space in the center of a column permits reinforcement or electrical wiring if needed. The column leveling pad should extend 6 inches beyond each column edge and be at least 6 inches deep after compaction.

COLUMN AT END OF WALL

To build columns at the end of a wall, cut one column unit in half for the second, fourth and additional evennumbered courses. Stack column units in a rotating pattern for each course so that the bond is staggered. One column unit half is used every two courses. Glue each course of column units with a concrete adhesive. Integrate wall into column as shown to increase stability.

WALL THROUGH COLUMN

On the first course, use complete column units to start the column and cut the wall units to fit. On the second course, cut two column units in half to fill in the corners. Continue construction by alternating courses. Glue all column courses with a concrete adhesive.

A Highland Stone®Free Standing Wall with columns is a great way to enclose an outdoor room and provide support for a privacy screen and pergola.

90° CORNER AT COLUMN

Frequently, a 90° turn is made at a column. To build this column, cut one column unit per course. Stack column units in a rotating pattern for each course. Glue each course of units with a concrete adhesive.

PILASTER IN RUNNING WALL

Pilasters add stability and elegance to a wall. They are located on one side of a wall. To build a pilaster, stack column units in a rotating pattern for each course. Cut wall units as indicated. Glue each course of units in the pilaster with a concrete adhesive.

PILASTER AT END OF WALL

To build a pilaster at the end of a wall, stack three column units as shown for the base course. For the second course, use pillar units, stacking in a rotating pattern. Glue each course of units in the pilaster with concrete adhesive.

Tip: For information on capping a wall, see page 24.

SM ALL PILASTER IN WALL

There are times when a pilaster of a different size is needed. To build a smaller pilaster in the running wall, you will need to split a medium unit for the first course. Split the unit so that the pieces, combined with another medium unit, equal 18 inches. Place the units parallel to the wall on the prepared leveling pad. For the second course, split a large and medium unit so that they equal 18 inches. Split a second set of large and medium units to make a second 18 -inch section. Insert these units perpendicular to the wall as shown. Glue all courses. Round the split ends with a hammer and chisel.

SM ALL PILASTER AT END OF WALL

To build a smaller pilaster at the end of a running free standing wall, you will need to split 4 units for the first course. Split a large and small unit so they equal 18 inches. Split a second set of units to make a second 18 -inch section. Insert the unit sets perpendicular to the wall on the prepared leveling pad.

For the second course, center a medium unit over the pilaster base units as shown. Split another unit so that the bond on the course below is staggered. Round the split ends with a hammer and chisel. Glue all pilaster units with a concrete adhesive.

COLUMN WITH LARGE HIGHLAND STONE RETAINING WALL UNITS

To build a 30 -inch column, split two medium wall units in half. Stack column units in a rotating pattern for each course. Glue each course of units with a concrete adhesive. Round the split ends with a hammer and chisel. For more information about Highland Stone retaining wall products, see page 14.

CAPPING A COLUMN

There are numerous ways to cap a column. You can use cap units, single-piece units or natural stone. Here are some options.

Using an Extra Large Cap

This capping treatment requires 8 extra large trapezoidal cap units. (For other cap dimensions, please contact your dealer for specific instructions.) Each unit is cut as shown. Top with the 5 -inch square coupon. Use concrete adhesive to glue all pieces when cap is complete.

Using a Large Cap

This capping treatment requires 8 large trapezoidal cap units. Each unit is cut as shown. Top with the 10 -inch square coupon. Use concrete adhesive to glue all pieces when cap is complete.

LARGE CAP

Cap Placement

Course A

Coupon (glue to tops

PRODUCT DETAILS

- Available in two heights and three face lengths
- Can be used for gravity walls up to 4 feet high, including buried course
- Taller walls can be built with geosynthetic reinforcement when designed by a qualified engineer
- Minimum outside radius, measured on the top course to the back of the units: 4 feet*
- Minimum inside radius, measured on the base course to the front of the units: 8 feet*

Our patented rear-lip technology makes installation efficient and accurate.

LARGE

Approximate Dimensions**	3" $\times 18^{\prime \prime} \times 11^{1 / 2 "}$
Approximate Weight**	41 lbs.
Coverage	$.375 \mathrm{sq} . \mathrm{ft}$.
Setback/Batter	$9 / 16^{\prime \prime} / 10.6^{\circ}$

LARGE***

Approximate Dimensions**	$6 " \times 18^{\prime \prime} \times 12^{\prime \prime}$
Approximate Weight**	73 lbs.
Coverage	$.75 \mathrm{sq} . \mathrm{ft}$.
Setback/Batter	$1^{1 / 8} / 10.6^{\circ}$

CAP
Approximate Dimensions**
Front, 3 " $\times 18$ " $\times 13$

	Back, $3^{\prime \prime} \times 12^{\prime \prime} \times 13^{\prime \prime}$
Approximate Weight**	44 lbs.
Coverage	1.25 linear ft.

Setback/Batter

MEDIUM
$6^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$
59 lbs.
$.50 \mathrm{sq} . \mathrm{ft}$.
$1^{1 / 8^{\prime \prime}} / 10.6^{\circ}$

JUM PER
12 " $\times 6$ " x 13¼"
\qquad 48 Ib

48 lbs.	85 lbs.
$.50 \mathrm{sq} . \mathrm{ft}$.	$.67 \mathrm{sq} . \mathrm{ft}$

$1^{1 / 8^{\prime \prime} / 10.6^{\circ}}$

ESTIM ATING FORMULAS

For project material estimating, use the formulas listed in each step.

1
 EXPOSED WALL UNIT ESTIMATING

Determine the square footage of the exposed wall:
Exposed wall length $(\mathrm{L}) \times$ height $(H)=$ square feet (SF).

6-INCH UNITS USED ALONE
SF $\div 1.5$ = \# units each size
3- INCH UNITS USED ALONE
SF $\div .75=$ \# units each size
3- AND 6-INCH UNITS COM BINED
SF $\div 2.25=$ \# units each size

BURIED BASE UNIT ESTIMATING

Build buried base course using 6 -inch large units.
Determine the length (L) of the base in feet.
$\mathrm{L} \div 1.5=\# 6$ - inch large units

3

CAP ESTIMATING
Convert wall length (L) to inches: $\mathrm{L} \times 12=\mathrm{L}$ in
inches (LI). Cap factor (CF) = cap front inches + cap back inches $\div 2$.
For curved wall, add 10\%.
LI $\div \mathrm{CF}=$ \# caps

FILTER FABRIC ESTIMATING

Non-woven, 4 - to 6 -ounce filter fabric. Determine the SF of total wall.
SF $\div 9=$ square yards fabric

5 LEVELING PAD AGGREGATE ESTIMATING

Leveling pad aggregate is a compactible base material of $3 / 4$-inch minus (with fines). The leveling pad is a minimum of 6 inches in front of and behind the wall units and 6 inches deep after compaction. Wall length (L) in feet $\div 27 \times 1.1=$ cubic yards (CY). CY x $1.6=$ tons.

$$
\begin{aligned}
& \mathrm{L} \div 27 \times 1.1=\mathrm{CY} \\
& \mathrm{CY} \times 1.6=\text { tons }
\end{aligned}
$$

DRAINAGE AGGREGATE ESTIM ATING

Drainage aggregate is clear 1 -inch crushed stone (with no fines). The drainage column extends 12 inches behind the wall units. Wall length (L) in feet x total wall height (H) in feet $=S F \div 27 \times 1.1=$ cubic yards (CY). CY $\times 1.6=$ tons.
SF $\div 27 \times 1.1=\mathbf{C Y}$
CY $\times 1.6=$ tons

GEOSYNTHETIC
 REINFORCEMENT ESTIMATING

See reinforcement estimating charts on pages 39 to 41 for variations in soil and site conditions.

PROJECT ESTIMATING EXAMPLE

The wall is 50 feet long and 4 feet high, built with 3 - and 6 - inch units combined. There is no toe or crest slope, and the soils are clean sand and gravel.

1 EXPOSED WALL UNITS

$5^{\prime} \mathrm{L} \times 3.5^{\prime} \mathrm{H}=175 \mathrm{SF} \div 2.25=$ 78 units of each size

2 BURIED BASE UNITS

$50^{\prime} \mathrm{L} \div 1.5=\underline{34} 6$ - inch- high large units
TOTAL UNITS REQUIRED
6 - inch- high units

Large units	Wall	78
	Base	34
	Total	112

Medium units $\quad 78$
Small units $\quad 78$
3-inch- high units
Large, medium, small 78

3 CAP UNITS

LI example: $50^{\prime} \mathrm{Lx} \times 12^{\prime \prime}=600^{\prime \prime}$
CF example: $18^{\prime \prime}+12^{\prime \prime}=\underline{30 "} \div 2=\underline{15}$
Project example: $6001 \div \overline{15}=\underline{40}$ caps needed

4 FILTER FABRIC

$50^{\prime} \mathrm{Lx} 4^{\prime} \mathrm{H}=\underline{200} \mathrm{SF} \div 9=\underline{23}$ square yards fabric needed

5 LEVELING PAD AGGREGATE

$50^{\prime} \mathrm{L} \div 27=\underline{1.85} \times 1.1=\underline{2.1} \mathrm{CY} \times 1.6=$
3.3 tons needed

6

DRAINAGE AGGREGATE
$50^{\prime} \mathrm{Lx} 4^{\prime} \mathrm{H}=\underline{200} \mathrm{SF} \div 27 \times 1.1=\underline{8.15} \mathrm{CY} \times 1.6=$ 13.1 tons needed

7 GEOSYNTHETIC REINFORCEMENT

See reinforcement estimating charts on pages 39 to 41 for variations in soil and site conditions.

HIGHLAND STONE ${ }^{\circ}$ 16 RETAINING WALL PATIERNS

WHEN TO USE A PATTERN

You can install the Highland Stone®system in a random pattern using any combination of units. Just avoid vertical lines that span more than 1 foot in height.
If you are building a wall without geosynthetic reinforcement, use a pattern for inspiration or follow a pattern exactly. Pleasing random patterns can be built using an equal number of 3 - and 6 -inch-high blocks or using an equal square footage of blocks in each size. The estimating formulas on page 15 are based on using an equal number of blocks of each size in each height.
When building a wall that includes geosynthetic reinforcement, using a pattern at the appropriate spacing HIGHLAND STONE 6-INCH BLOCK PATTERN
 eliminates the need to cut the grid. When using a pattern, begin at one edge laying the blocks as indicated. Install at least one repeat of the pattern to establish the pattern before proceeding to the next course.

HIGHLAND STONE 3- AND 6 -INCH block com bination patterns

24-INCH BY 9-FOOT PATTERN

This illustrates a 24 -inch-high by 9 -foot-long repeating pattern. When your plan requires reinforcement, this pattern is ideal because it eliminates cutting.

18-INCH BY 6-FOOT PATTERN

This illustrates an 18 -inch-high by 6 -foot-long repeating pattern. When your plan requires reinforcement, this pattern is ideal because it eliminates cutting.

12-INCH BY 9-FOOT PATTERN

This illustrates a 12 -inch-high by 9 -foot-long repeating pattern. When your plan requires reinforcement, this pattern is ideal because it eliminates cutting.

CUTTING GRID

Grid can be cut if needed. See page 38 for more information about cutting grid.

PRODUCT DETAILS

- Available in straight- or beveled-face styles
- Can be used for building gravity walls up to 4 feet high, including buried course
- Taller walls can be built with geosynthetic reinforcement when designed by a qualified engineer
- M inimum outside radius: straight face, 4 feet; beveled face, 2 feet
- M inimum inside radius: straight face, 8 feet; beveled face, 4 feet
- ICC- evaluated

*Unit has a partial core. Specifications may vary by region.
**Actual dimensions and weights may vary from these approximate dimensions and weights due to variations in manufacturing processes. Specifications may change without notice. See your Anchor representative for details, color options, block dimensions and additional information.

Diamond®units were used to build a snug sunken patio.

ESTIM ATING FORMULAS

For project material estimating, use the formulas listed in each step.

1 WALL UNIT ESTIMATING

Determine the square footage of the total wall, including buried base course. Wall square footage $(S F)=$ length (L) x height (H).

Beveled Face

SF x 1.5 = \# units
Straight Face
SF x 1.4 = \# units

2 CAP ESTIMATING

Convert wall length (L) to inches: $\mathrm{L} \times 12=\mathrm{L}$ in inches (LI). Cap factor (CF) = cap front inches + cap back inches $\div 2$. (Additional caps will be needed for elevation changes and curves.)

$$
\mathrm{LI} \div \mathrm{CF}=\# \text { caps }
$$

3 LEVELING PAD AGGREGATE ESTIM ATING
Leveling pad aggregate is a compactible base material of $3 / 4$-inch minus (with fines). The leveling pad extends at least 6 inches in front of and behind the wall units and is at least 6 inches deep after compaction. Wall length in feet $(\mathrm{L}) \div 27 \times 1.1$ $=$ cubic yards (CY). CY x $1.6=$ tons.
$\mathrm{L} \div 27 \times 1.1=\mathrm{CY}$
CY $\times 1.6=$ tons
4 DRAINAGE AGGREGATE ESTIM ATING
Drainage aggregate is clear, 1 -inch crushed stone (with no fines). The drainage column extends 12 inches behind the wall units. Wall length (L) x total wall height $(\mathrm{H})=$ square feet $(\mathrm{SF}) \div 27 \times 1.1$ = cubic yards (CY). CY x $1.6=$ tons.

$$
\begin{aligned}
& S F \div 27 \times 1.1=C Y \\
& C Y \times 1.6=\text { tons }
\end{aligned}
$$

5 GEOSYNTHETIC REINFORCEM ENT ESTIMATING

See pages 39 to 41. Choose the appropriate estimating chart based on your project conditions.

PROJECT ESTIM ATING EXAM PLE

Total wall is 50 feet long and 4 feet high. The product is beveled- face units. There is no toe or crest slope, and soils are clean sand and gravel.
1 TOTAL WALL UNITS
$50 '$ Lx 4' H = $\underline{200}$ SF x $1.5=\underline{300}$ units

2 CAP UNITS

LI example: $50 '$ Lx 12" $=600$
CF example: $17.25^{\prime \prime}+12^{\prime \prime}=29.25^{\prime \prime} \div 2=14.6$
Project example: $600 \div 14.6=\underline{42}$ caps

3 LEVELING PAD AGGREGATE

$50^{\prime} \mathrm{L} \div 27=\underline{1.85} \times 1.1=\underline{2.1} \mathrm{CY} \times 1.6=$ 3.4 tons needed

4 DRAINAGE AGGREGATE

$50 ' \mathrm{Lx} 4$ ' H $=\underline{200} \mathrm{SF} \div 27 \times 1.1=\underline{8.15} \mathrm{CY} \times 1.6$
$=\underline{13}$ tons needed

5 GEOSYNTHETIC REINFORCEMENT

See reinforcement estimating charts on pages 39 to 41 for variations in soil and site conditions.

Expand the front yard and provide access using Diamond $®$ wall and step units.

20 DIAM OND PRO" retanncg wal srstem

PRODUCT DETAILS

- Available in three face styles: Stone Cut, ${ }^{\text {TM }}$ straight and beveled
- Stone Cut available in three face lengths
- Can be used to build gravity walls, including buried course, up to 3 feet, 4 inches high
- Taller walls can be built with geosynthetic reinforcement when designed by a qualified engineer
- ICC- evaluated

Our patented rear-lip
technology makes installation efficient and accurate.

BEVELED
AND
STRAIGHT
FACE

BEVELED FACE

Approximate Dimensions*	$8^{\prime \prime} \times 18^{\prime \prime} \times 12^{\prime \prime}$	$8^{\prime \prime} \times 18^{\prime \prime} \times 12^{\prime \prime}$
Approximate Weight*	72 lbs.	74 lbs.
Coverage	$1.0 \mathrm{sq} . \mathrm{ft}$.	$1.0 \mathrm{sq} . \mathrm{ft}$.
Setback/Batter	$1^{\prime \prime} / 7.13^{\circ}$	$1^{\prime \prime} / 7.13^{\circ}$
Inside Radius	4^{\prime}	6^{\prime}
Outside Radius	4^{\prime}	4^{\prime}

ACCESSORIES		
	CAP	CORNER
Approximate Dimensions*	Front, $4^{\prime \prime} \times 17^{\prime \prime} 4^{\prime \prime} \times 10^{\prime \prime}$	$8^{\prime \prime} \times 18^{\prime \prime} \times 9^{\prime \prime}$
	Back, $4^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$	$8^{\prime \prime} \times 18^{\prime \prime} \times 9^{\prime \prime}$
Approximate Weight*	40 lbs.	101 lbs.
Coverage	$.41 \mathrm{sq} . \mathrm{ft}$.	$.75 \mathrm{sq} . \mathrm{ft}$.

[^0]
DIAMOND PRO ${ }^{\text {T" }}$ STONE CUT ${ }^{\text {m }}$ FACE INSTALLATION PATTERN

C	11		18	7	11		18	7
	C	7	11	18	7		11	9**
C	18		11	7	18		11	7
		11	7	18		11	7	9**

This is one of many random patterns that can be created with 3 - piece Diamond Pro ${ }^{\text {TM }}$ Stone Cut. ${ }^{\text {TM }}$ Virtually any configuration will work, provided you maintain a good running bond between courses.
**Partial unit. 'C' represents a corner unit.

ESTIM ATING FORM ULAS

For project material estimating, use the formulas listed in each step.

WALL UNIT ESTIM ATING
Choose the wall unit formula based on the face style.

STRAIGHT AND BEVELED WALL UNIT ESTIMATING

Determine the square footage of the total wall, including buried course. Square footage (SF) of total wall is length (L) x height (H). If using straight or beveled, skip to step 3.

SF x 1 = \# of units
EXPOSED WALL UNITS - ESTIMATING STONE CUT ${ }^{\text {m }}$ FACE

Determine the square footage of the exposed wall. Square footage (SF) of exposed wall is length (L) x height (H).

SF $\div 2$ = \# units of each size

2

BURIED BASE UNIT ESTIM ATING STONE CUT FACE

Build buried base course using large units. Determine the length (L) of the base in feet.
$\mathrm{L} \div 1.5=$ \# large units for buried base

CAP ESTIMATING

Convert wall length (L) to inches: $\mathrm{L} \times 12=\mathrm{L}$ in inches (LI). Cap factor (CF) = cap front inches + cap back inches $\div 2$.

LI \div CF = \# caps

LEVELING PAD AGGREGATE ESTIM ATING

Leveling pad material is a compactible base material of $3 / 4$-inch minus (with fines). The leveling pad extends at least 6 inches in front of and at least 6 inches behind the wall units and is at least 6 inches deep after compaction. Wall length in feet (L) $\div 27 \times 1.1=$ cubic yards (CY). CY $\times 1.6=$ tons.

$$
L \div 27 \times 1.1=C Y
$$

$\mathrm{CY} \times 1.6=$ tons

DRAINAGE AGGREGATE ESTIM ATING

Drainage aggregate is clear $3 / 4$ - to 1 - inch crushed stone (without fines). The drainage column extends a minimum of 12 inches behind the wall units. Wall length (L) x total wall height $(H)=$ square feet (SF) $\div 16.4=$ tons.

CORE FILL AGGREGATE ESTIMATING

Calculate the square feet (SF) of the total wall. SF $\div 35=$ tons

7 GEOSYNTHETIC REINFORCEMENT

 ESTIMATINGSee pages 42 to 44 for charts. Choose the appropriate estimating chart based on your project conditions.

PROJ ECT ESTIMATING EXAM PLE

The wall is 100 feet long and 8 feet high, including buried course. It is built using the Stone Cut 3 -piece system. There is no toe or crest slope, and the soils are clean sand and gravel.

1 EXPOSED WALL UNITS

$100^{\prime} \mathrm{Lx} 7.33^{\prime} \mathrm{H}=733 \mathrm{SF} \div 2=\underline{367}$ large, medium and small Stone Cut units needed

2 BURIED BASE UNITS

$100^{\prime} L \div 1.5=\underline{67}$ large units for the buried course
TOTAL UNITS REQUIRED
Large units Wall 367
Base 67

Total 434
Medium units 367
Small units 367

3 CAP UNITS

CF example: $17.25^{\prime \prime}+10^{\prime \prime}=27.25^{\prime \prime} \div 2=13.7$ L example: 100 ' x 12" = 1,200
Project example: $1,200 \div 13.7=88$ caps

LEVELING PAD AGGREGATE
$100^{\prime} \mathrm{L} \div 27 \times 1.1=\underline{4.1} \mathrm{CY} \times 1.6=\underline{6.6}$ tons
DRAINAGE AGGREGATE
$800 \mathrm{SF} \div 16.4=49$ tons

6

CORE FILL AGGREGATE
$800 \mathrm{SF} \div 35=\underline{23}$ tons

7 GEOSYNTHETIC REINFORCEM ENT ESTIM ATING

See pages 42 to 44 for charts. Choose the appropriate estimating chart based on your project conditions.

[^0]: *Actual dimensions and weights may vary from these approximate dimensions and weights due to the manufacturing process. Specifications may change without notice. See your Anchor representative for details, color options, block dimensions and additional information.

